Molecular Markers in Toxicology and Epidemiology

Development, Validation, and Application of Biomarkers

Steven R. Myers, Ph.D.

Professor

Associate Chair for Professional Education

Department of Pharmacology and Toxicology

University of Louisville School of Medicine

University of Louisville

Louisville, Kentucky USA

Email: sr.myers@louisville.edu

Introduction

Virtually any change produced by an environmental contaminant, whether at a biochemical, cellular, organismal, community or population level, can be regarded as a biomarker. However, for a biomarker to be useful as a monitoring tool, it should meet one or more of the following criteria:

Specificity - is the change a direct result of exposure to the contaminant? An example of an indirect response would be if the contaminant evoked a stress response which in turn brought about changes in various biomarkers .

Sensitivity - is the change the first to be produced by the contaminant?

Practicality - are there cheaper ways to get the same answer !

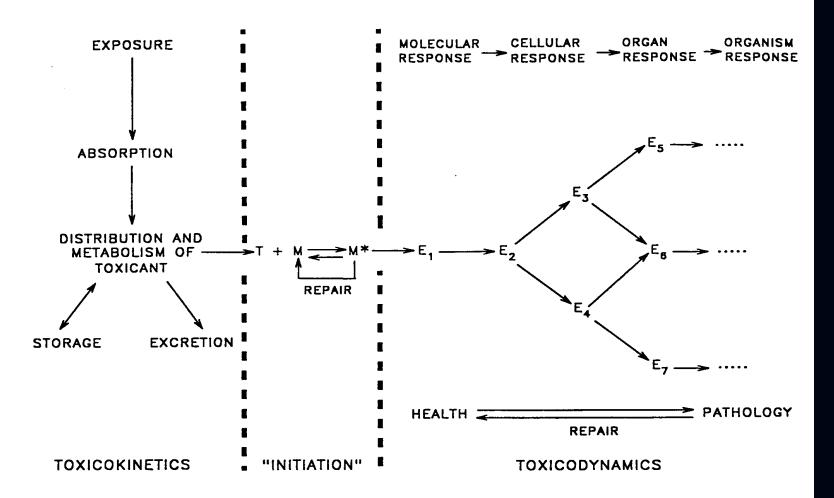
ADVANTAGES OF BIOCHEMICAL AND CELLULAR BIOMARKERS

- Biochemical and cellular events tend to be more sensitive, less variable, more highly conserved between species, and often easier to measure than stress indices commonly examined at the organismic level.
- · Biochemical and molecular alterations are the first detectable quantifiable responses to environmental changes.
- · Biochemical markers can serve as markers for both exposure and effect in organisms.

DISADVANTAGES OF BIOCHEMICAL AND CELLULAR BIOMARKERS

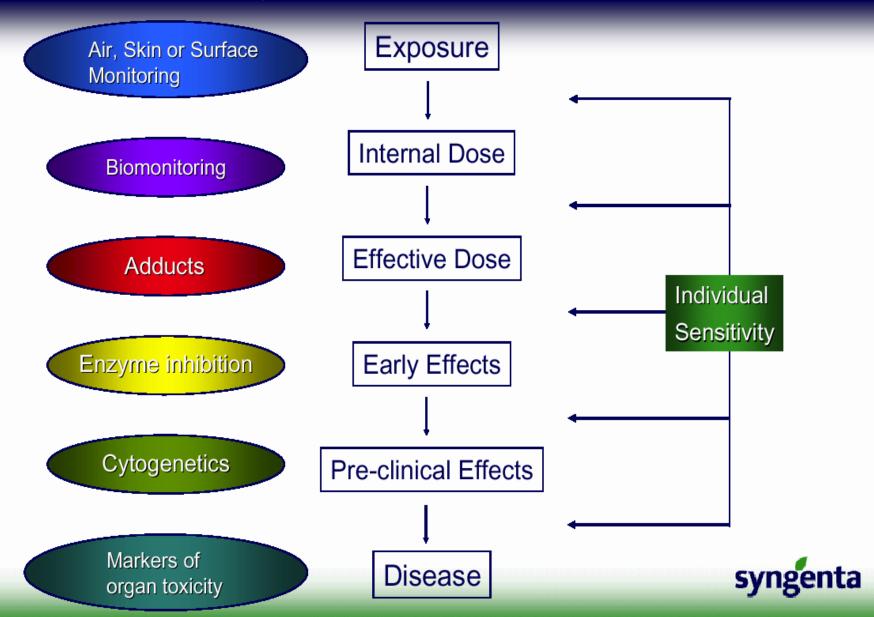
Age, diet, environmental factors, seasonal variation, and reproductive cycle may alter a number of structural states representing normality and could be potentially confounding issues in attempts to use morphological criteria as biomarkers of effect.

- Overlap between anticipated toxic state and some aspects of the range of normal morphology may exist.
- It is difficult to relate biochemical responses to the health of the organism and to adverse effects on the population, the type of information which is often the bottom line in environmental monitoring. This problem can be overcome, however, by selecting biomarkers which detect cellular and biochemical events which are intimately involved in protecting and defending the cell from environmental insults.


Definitions

- Biomarkers: Molecular, biochemical, or cellular alterations that are measurable in biological media, such as human tissues, cells, or fluids
- Molecular epidemiology: Incorporation of biomarkers into analytical epidemiological research

Fundamental principles of toxicology


- Principle I: The toxic action of a substance is a consequence of the physical/chemical interaction of the active form of that substance with a molecular target within the living organism
- Principle II: The magnitude of the toxic effect will be a function of the concentration of altered molecular targets which in turn is related to the concentration of the active form of the toxicant at the site where the molecular targets are located

THE TOXICOLOGICAL PROCESS

Continuum between exposure and disease outcome

(adapted from Talaska et al., 2002)

Markers of internal dose

- A direct measure of toxic chemicals or its metabolites in cells, tissues, or body fluids (e.g., blood, urine, feces, milk, amniotic fluid, sweat, hair, nails, saliva(
 - integrate multiple portals of entry
 - integrate fluctuating exposures
 - relate time of exposure to internal dose

Examples of biomarkers of internal dose

- Exhaled breath
 - volatile organic compounds (ethanol(
- Blood levels
 - styrene, lead,cadmium, arsenic
- Fat concentration
 - PCBs and PBBs, DDT, and TCDD
- Metabolites in urine
 - Aflatoxin, benzene, arsenic

- Mutagens in urine
 - Chemotherapeutic agents, carcinogens
- Hair samples
 - arsenic
- Blood
 - carboxyhemoglobin
 - carbon monoxide
- Blood
 - methemoglobinemia
 - organic nitrates

Markers of Biologically effective dose: Assessment of the interactions of toxicants with their molecular targets

DNA adducts

- cellular DNA
 - Benzo(a)pyrene DNA adducts in peripheral lymphocytes of coke oven workers
 - cislatinum DNA adducts in WBCs of chemotherapy patients
 - O6 methyldeoxyguanosine in GI mucosa from nitrosamine ingestion

Protein adducts

- Albumin adducts
 - PAHs, aflatoxins
- Hemoglobin adducts
 - ethylene oxide, aromatic amines, PAHs, nitrosamines

Markers of early biological effect: assessment of molecular sequelae of toxicant cell interactions

- Genetic alterations in target and reporter genes
 - mutated oncogenes
 - hprt
 - thymidine kinase
 - glycophorin A
 - loss of tumor supressor genes
 - gene rearrangements
- Nuclear aberrations
 - single strand breaks
 - unscheduled DNA synthesis
 - DNA hyperploidy
 - micronuclei
 - sister chromatid exchanges
 - chromosomal gaps and breaks

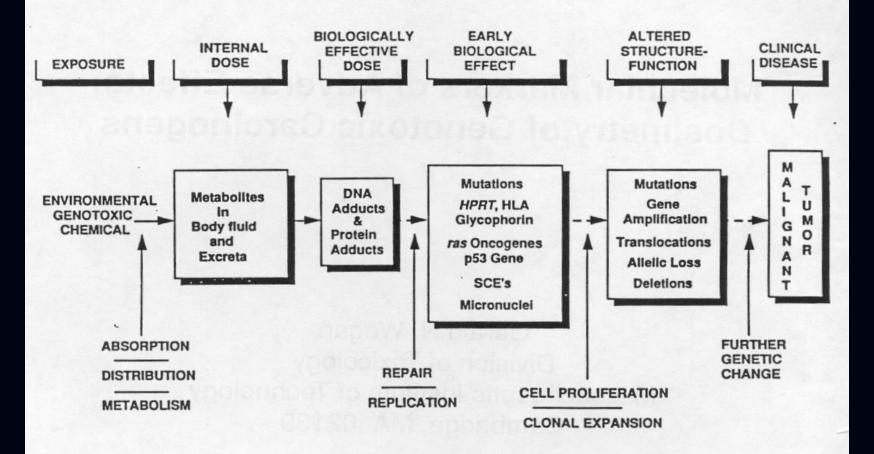
Altered Enzymatic activities

- elevated protoporphyrin (lead(
- decreased acetycholinesterase (organophosphates(
- elevated xenobiotic metabolizing enzymes (TCDD, PAHs(

Markers of altered structure and function: assessment of morphological and/or functional changes following toxicant cell interactions

- Serum markers of disease
 - elevated serum GSTs, ALA, SDH (liver toxicity(
 - creatinine kinase (myocardial toxicity(
- Proliferation markers
 - mitotic frequency
 - thymidine labeling index
 - nuclear antigens
 - ornithine decarboxylase
 - polyamine levels

- Differentiation markers
 - cytokeratins
 - involucrin
 - transglutamase
- Differentially expressed genes
 - EGF, TGF-B, serum afetoprotein
- Cellular/tissue changes
 - metaplastic lesions
 - changes in sperm counts and mobility
 - macrophage activity
 - red cell counts


Criteria for selecting intermediate biomarkers

- Is there a causal relationship between the biomarkers and disease ?
- Does the biomarker appear at a defined stage of the disease process?
- Can the biomarker be modulated by eliminating exposure
- Can the biomarker be obtained by non-invasive techniques?
- Do the biomarker and its assay provide acceptable sensitivity, specificity, and accuracy?
- Is the biomarker stable and easy to measure?

The validation process: confirming the biomarker disease link

- What is the intra- and interindividual variability?
- What is the background?
- What are the optimal sampling conditions? (e.g. timing, seasonality, repetitive or serial sampling)
- Is there agreement of mutually confirmatory methods for measuring the same biomarker?
- Is there a relationship between the biomarker and disease?
- Can the biomarker levels be modulated during intervention?
- Is there a dose response?

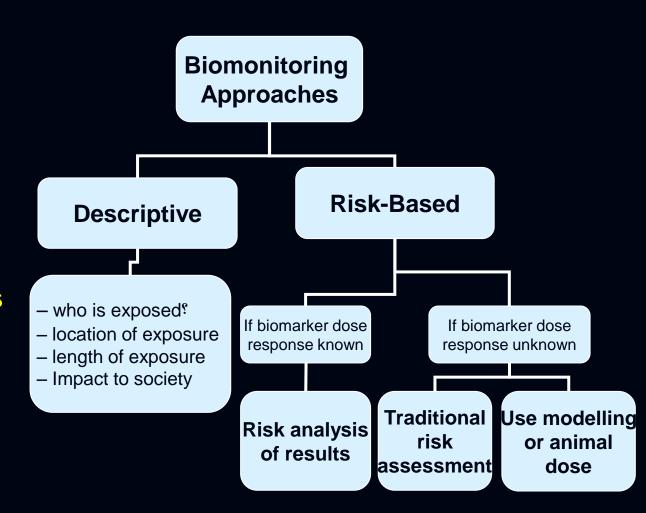
MOLECULAR BIOMARKERS OF GENOTOXIC EXPOSURE

Markers of Biologically effective dose DNA and protein adducts

- Tobacco smoking
- dietary exposure
- medicinal exposure
- Occupational exposure
- Oxidative damage

- The choice of biomarker is dependent upon the unique conditions under which it is to be applied. Some important factors to consider in order to use a biochemical biomarker effectively include the following:
- the environmental question being addressed
- the nature of the chemicals of interest
- the species appropriate to the situation
- the types of metabolites anticipated
- the nature of the biological sample
- possible modifying factors specific to the situation
- limits of detection for the analytical procedures
- quality assurance/quality control considerations
- · cost

Application of Biomarkers in Epidemiology


WHY USE BIOMARKERS?

Clinical uses

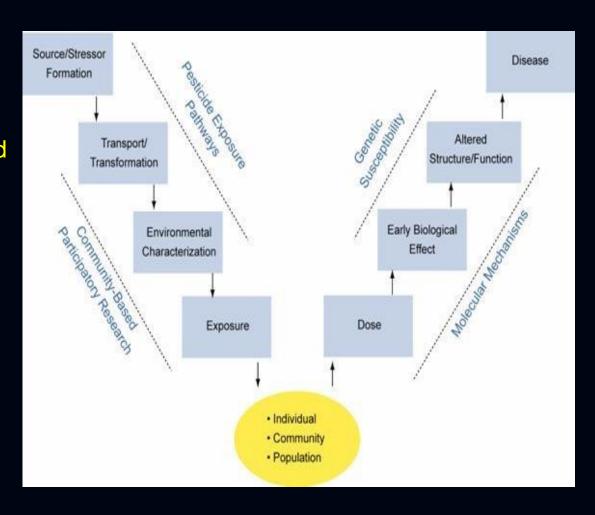
Research uses

Public health uses

Policy uses

Chemical	Biomarker	Some interpretive options
Polybrominated diphenyls (PBDE(PBDE in blood and breast milk	Identify exposed population, key information gaps, need for new toxicity and exposure data
Lead	Blood lead	Follow population exposures over time
Organo- phosphates	Parent compound, primary & secondary metabolites, blood and urine	Develop reference ranges, evaluate exposed subpopulations, evaluate public health interventions
Phthalates	Primary & secondary urinary metabolites	Develop reference ranges, identify and follow exposed subpopulations :
Dioxin	Dioxin in blood or lipid	Use of pharmacokinetic modeling to estimate body burden

Chemical	Biomarker	Relative utility in clinical medicine
Lead	Blood Lead	Identify and manage lead poisoning in individual patients – very useful clinically
Arsenic	Urinary Arsenic	Identify recent arsenic exposure – somewhat useful clinically
Organo- phosphates	Serum or red blood cell cholinesterase level	High intra- and inter-individual variability, overlap with toxic levels, results not available in a timely fashion, lab errors common, not useful clinically
Nitrate/ nitrite	Methemoglobin	Nonspecific and expressed as % of total hemoglobin, must be interpreted within the context of full exposure history and physical exam – somewhat useful clinically
Benzene	Benzene in blood or expelled breath	Short half-life so only useful within a few hours of high exposure – not useful clinically outside of occupational setting


Examples of order of magnitudes for levels of detection for some biomarkers

Marker	Matrix	Units
Polycyclic aromatic hydrocarbon	Urine	ng/L
Cotinine	Serum	ng/mL
Benzene	Blood	ng/mL
Organophosphate metabolites	Urine	g/L
Arsenic	Urine	g/L
Bisphenol A	Urine	g/L
Lead	Blood	g/dL
Polybrominated diphenyl ethers	Serum	ng/g lipid
Dioxin	Serum	pg/g lipid

Biomarkers are most useful when both "up stream" and "down stream" knowledge is complete

- Primary sources of environmental contaminant understood
- Pathways/routes of exposure understood
- Human exposure is related to animal toxicology studies
- Exposure-dose relationship understood
- Timing and duration of exposure known

The Environmental Public Health Continuum (EPHC(

Issues Facing Biomarker Development

METHODOLOGICAL ISSUES

- Analytical technique
- Environmental contaminants and controls
- Laboratory contamination and quality assurance
- Correct choice of biomarker for study design and question
- Rationale for selecting environmental chemicals of interest
- Coordination with related research –
 epidemiology, toxicology, pharmacokinetic
 modeling, exposure assessment

RISK COMMUNICATION ISSUES

Who gets the results and why?

- Exposures need context
 - + Source and route
 - + Bioavailability
 - + Toxicity

At risk communities may have unrealistic expectations

Lag between research and intervention

Why biomarkers are not always useful

- Incomplete knowledge of toxicity
- Inappropriate clinical use of research tools

ETHICAL ISSUES

- Informed consent
- Ability to inform dangerously exposed/at risk individuals
- Biobanking of genetic materials
- Ethical standards differ between researchers and community
 - + Individual value versus community value

먑

MANY NATIONAL & REGIONAL BIOMONITORING PROGRAMS EXIST

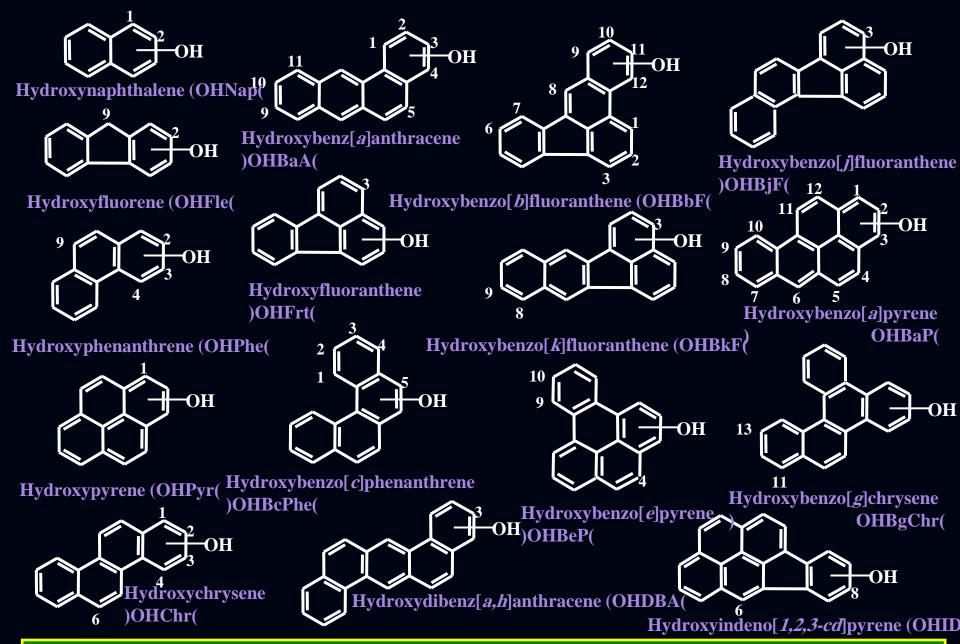
- In the U.S., decades of biomonitoring
- Increasing number of environmental chemicals monitored
- Increasing number of programs and agencies involved

EXAMPLES OF BIOMONITORING PROGRAMS

In the U.S.

- **HEI:** Human Exposure Initiative
- **HHANES**: Hispanic Health & Nutrition **Examination Survey**
- **NHATS**: National Human Adipose Tissue Human Biomonitoring Survey
- **NHANES:** National Health & Nutrition **Examination Survey**
- **NHEXAS**: National Human Exposure Assessment Survey

In Europe & Canada:


- Canada: Health Canada's biomonitoring initiatives
 - **European Union**: European
- **Germany**: Human 0 **Biomonitoring Commission**
- Sweden: Swedish **Environmental Protection** Agency on Environmental **Pollutants**

Specific Examples of Chemicals Causing Harm to Humans and Animals

Polycyclic aromatic Hydrocarbons

What are polycyclic aromatic hydrocarbons!

- Polycyclic aromatic hydrocarbons (PAHs) are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. PAHs are usually found as a mixture containing two or more of these compounds, such as soot.
- Some PAHs are manufactured. These pure PAHs usually exist as colorless, white, or pale yellow-green solids. PAHs are found in coal tar, crude oil, creosote, and roofing tar, but a few are used in medicines or to make dyes, plastics, and pesticides

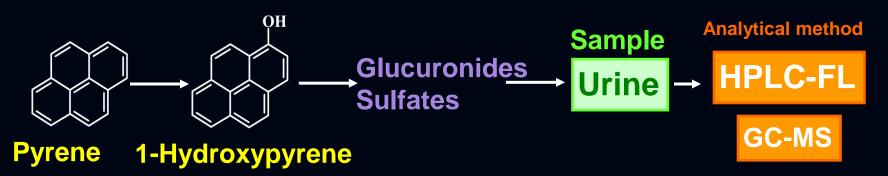
Structures of monohydroxy derivatives of polycyclic aromatic hydrocarbons (PAHs(Position numbers indicate the positions of hydroxy group for the tested monohydroxy derivatives of PAHs.

How are we exposed to PAHs today? ? ?

- Exposure to polycyclic aromatic hydrocarbons usually occurs by breathing air contaminated by wild fires or coal tar, or by eating foods that have been grilled.
- PAHs have been found in at least 600 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA.(
- Breathing air containing PAHs in the workplace of coking, coal-tar, and asphalt production plants; smokehouses; and municipal trash incineration facilities.

- Breathing air containing PAHs from cigarette smoke, wood smoke, vehicle exhausts, asphalt roads, or agricultural burn smoke.
- Coming in contact with air, water, or soil near hazardous waste sites.
- Eating grilled or charred meats;
 contaminated cereals, flour, bread,
 vegetables, fruits, meats; and
 processed or pickled foods.
- Drinking contaminated water or cow's milk .
- Nursing infants of mothers living near hazardous waste sites may be exposed to PAHs through their mother's milk

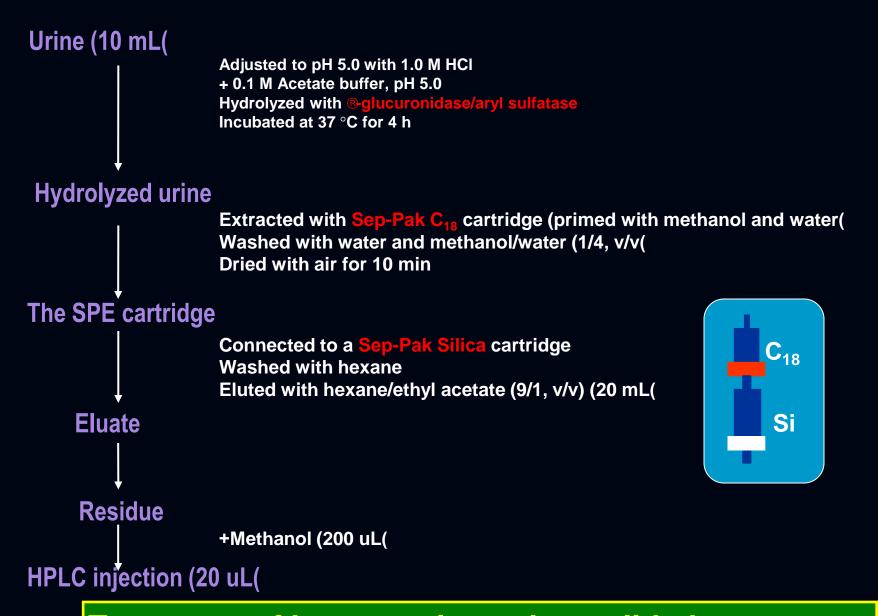
Is Exposure to PAHs Associated with an Increase in Cancer Risk?


- Epidemiologic studies have reported an increase in lung cancer in humans exposed to coke oven emission, roofing tar emissions, and cigarette smoke. Each of these mixtures contains a number of PAHs.
- Animal studies have reported respiratory tract tumors from inhalation exposure to benzo(a)pyrene and forestomach tumors, leukemia, and lung tumors from oral exposure to benzo(a)pyrene.
- EPA has classified benzo(a)pyrene as a Group B2, probable human carcinogen.

PAH Exposure

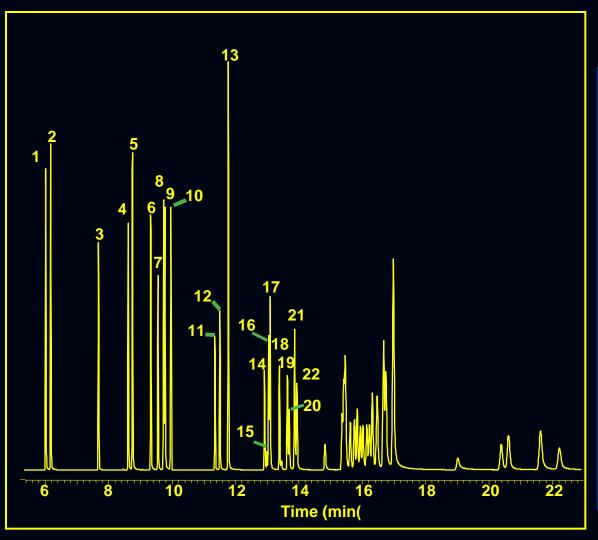
.1Typical biomonitoring method

Hydroxylated metabolites of PAHs in urine

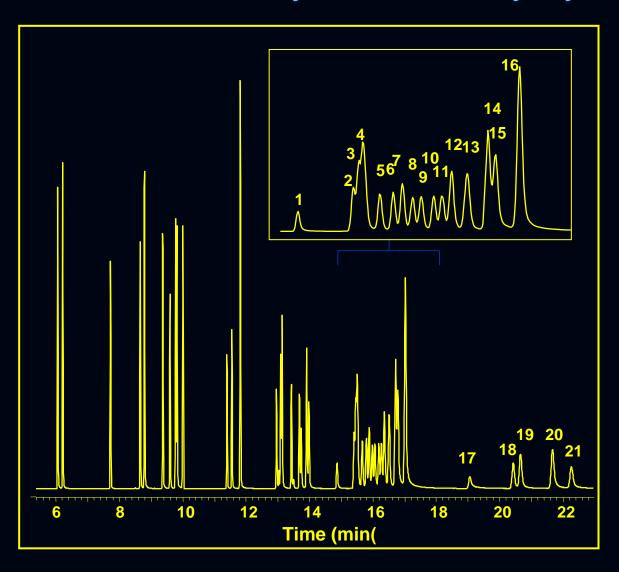


.2Technical issue

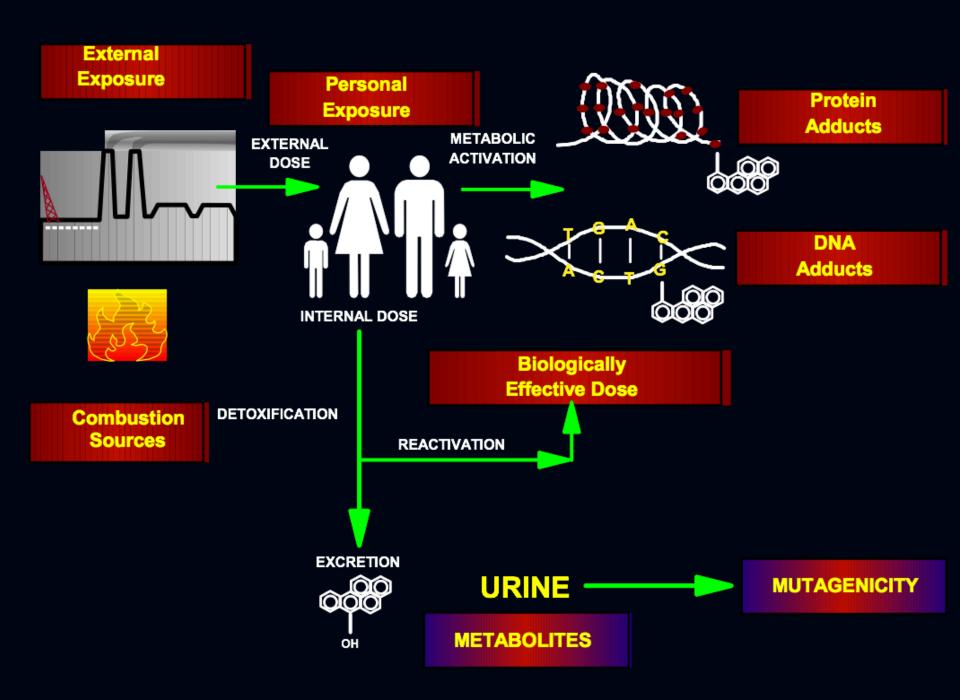
Analysis of just one metabolite sometimes seems to be an indicator of the absorption of only the parent PAH.


.3Our strategy

The simultaneous determination of several PAH metabolites in urine will provide more comprehensive information to estimate the exposure of an individual to PAHs.


Treatment of human urine using solid phase extraction for the determination of OHPAHs

HPLC analysis of urinary hydroxy PAHs



- 1. -1OH-naphthalene
- 2. -2OH-naphthalene
- 3. -3OH-fluorene
- 4. -2OH-fluorene
- 5. -9OH-fluorene
- 6. -9OH-phenanthrene
- 7. -30H-phenanthrene
- 8. -20H-phenanthrene
- 9. -10H-phenanthrene
- 0. -40H-phenanthrene
- 11. -1OH-benzo(c)phenanthrene
- 12. -3OH-fluoranthene
- 13. -10H-pyrene
- 14. -2OH-benzo(c)phenanthrene
- 15. -1OH-benz(a)anthracene
- 16. -4OH-chrysene
- 17. -6OH-chrysene
- 18. -3OH-benzo(c)phenanthrene
- 19. -3OH-chrysene
- 20. -1OH-chrysene
- 21. -3OH-benz(a)anthracene
 - -9OH-benz(a)anthracene
- 22. -20H-chrysene

HPLC analysis of urinary hydroxy PAHs

- 1. -8OH-benzo(b)fluoranthene
- 2. -7OH-benzo(b)fluoranthene
- 3. -1OH-benzo(b)fluoranthene -9OH-benzo(b)fluoranthene
- 4. -2OH-benzo(b)fluoranthene -12OH-benzo(b)fluoranthene -8OH-benzo(b)fluoranthene
- 5. -9OH-benzo(e)pyrene
- 6. -3OH-benzo(b)fluoranthene
- 7. -12OH-benzo(a)pyrene
- 8. -5OH-benzo(a)pyrene
- 9. -11OH-benzo(b)fluoranthene
- 10. -6OH-benzo(b)fluoranthene
- 11. -3OH-benzo(k)fluoranthene
- 12. -4OH-benzo(e)pyrene -10OH-benzo(b)fluoranthene
- 13. -9OH-benzo(k)fluoranthene -7OH-benzo(a)pyrene
- 14. -10OH-benzo(e)pyrene
- 15. -3OH-benzo(e)pyrene
- 16. -3OH-benzo(a)pyrene -2OH-benzo(e)pyrene
- 17. -1OH-indeno-[1,2,3-c,d]-pyrene
- 18. -2OH-indeno-[1,2,3-c,d]-pyrene
- 19. -6OH-indeno-[1,2,3-c,d]-pyrene
- 20. -8OH-indeno-[1,2,3-c,d]-pyrene
- 21. -3OH-dibenzo[a,h]anthracene

Aflatoxin B1

Aflatoxin B1: Background

 Hepatotoxic mycotoxin (toxin from a fungus) produced by the fungi Aspergillus flavus and Aspergillus parasiticus

Causes aflatoxicosis and liver disease

Aspergillus spp. grow ubiquitously on plants and crops from tropical and subtropical areas: peanuts, figs, spices, corn, maize, Brazil nuts, pecans, walnuts, soybeans, pistachios, wheat and grains

Background

- The carcinogenic metabolite of Aflatoxin B1 is found in the milk of mammals who consume contaminated crops
- Aspergillus growth and Aflatoxin B1 production is dependent upon the temperature, humidity, host plant type, and the strain of fungus; high humidity usually required for growth

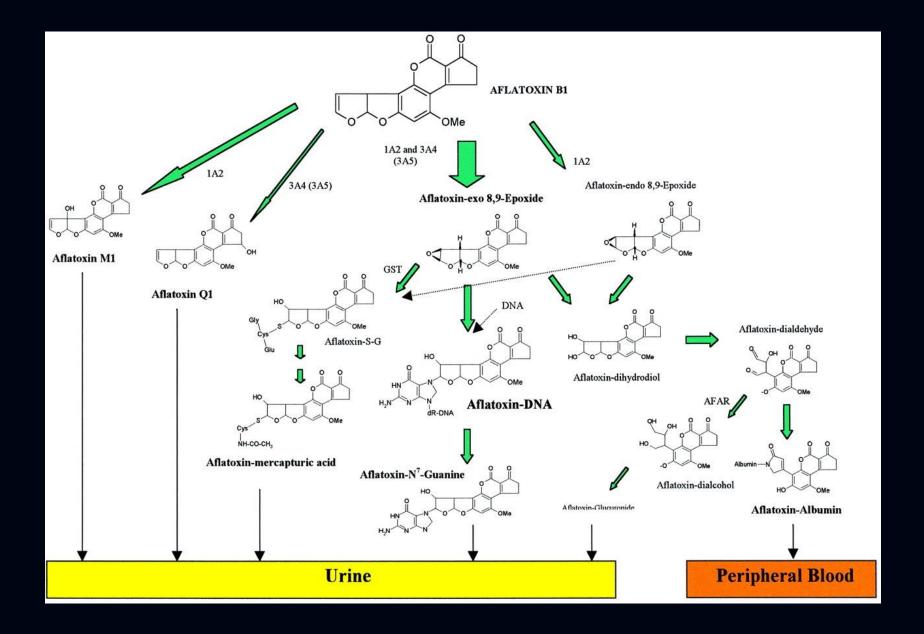


Figura 6. Formación aducto aflatoxina –DNA y compuesto utilizado como biomarcador de exposición en orina. Fuente: Referencia 14.

AFB1-8,9-epoxide Is Cancercausing!!

 One of the most serious effects of the AFB1-8,9-epoxide metabolite is it reacts with DNA and proteins to form an adduct.

Other Adverse Effects of AFB1-8,9-epoxide

- Lipid accumulation in the liver due to decreased lipid transport and reduced oxidation
- -Symptoms of liver failure occur with acute aflatoxicosis:
 - -Jaundice
 - -ascites (fluid build up (
 - -portal hypertension
 - -necrosis of the liver

Other Chronic Effects of Aflatoxin

Immunological Suppression

 Using animal models, AFB1 has been shown to impair normal immune function either by reducing phagocytic activity or reduce T cell number and function.

Nutritional Interference

Aflatoxin is shown to have a dose response relationship between exposure to aflatoxin and rate of growth among small children. In addition, it also interferes in nutrient modification such as Vitamin A or D in animal models.

Aflatoxins and Food Production

Major crops affected by aflatoxins include maize (corn) and groundnuts (peanuts). Agricultural practices can be modified to reduce aflatoxin production / contamination.

Farming practices

- · irrigation
- pesticide use
- time of harvest

Aspergillus on maize

Storage practices

- drying techniques
- processing, such as shelling peanuts

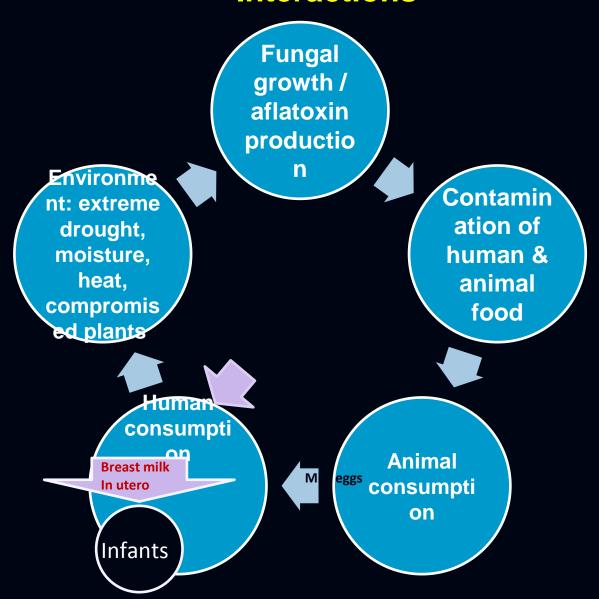
Drying maize

Aflatoxins in Farmed Animals

Poultry

- Highly sensitive
- Aflatoxin toxicity impairs uptake of essential nutrients as well as causing tissue damage

Ruminants

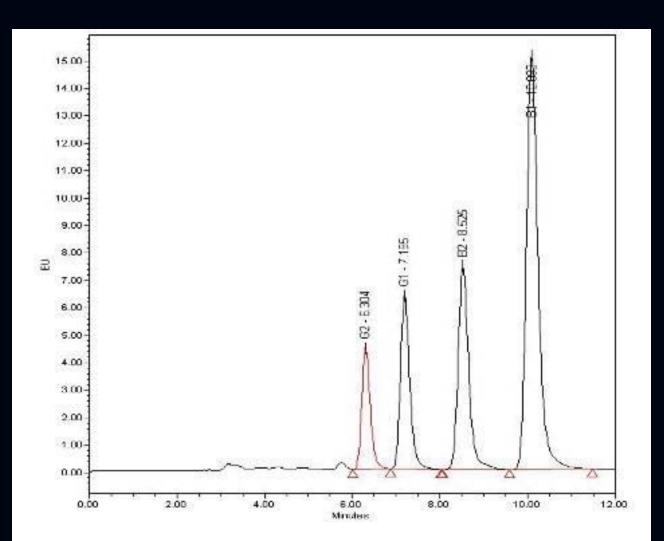

- Ruminants are relatively insensitive; however, aflatoxin exposure can cause growth impairment in young or lactating animals.
- Metabolites in milk and related dairy products
 - Aflatoxin consumed by cows is excreted in milk as the M1 metabolite.
 - The M1 metabolite can be absorbed by calves or humans causing growth failure.
 - The M1 metabolite also remains present in milk-based products such as cheese and yogurt.

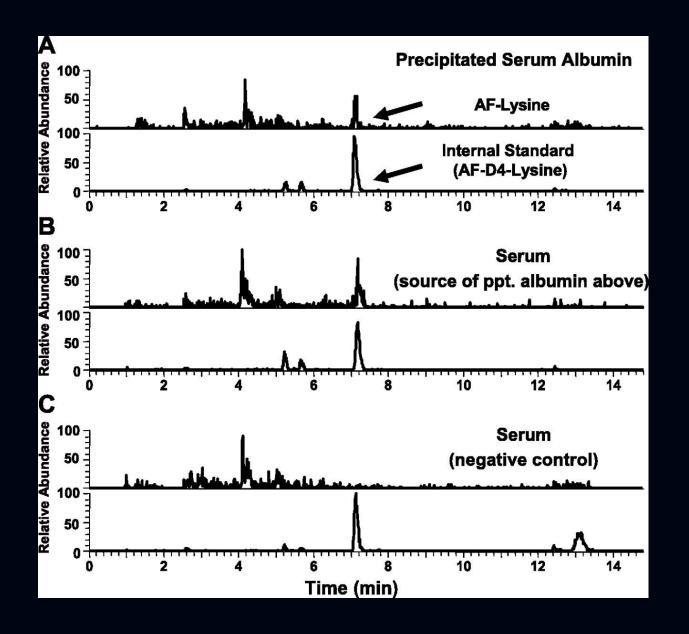
Fish

- When farmed fish are accidentally fed contaminated grains, large dieoffs may occur.
 - Rainbow trout are highly sensitive

Animal deaths and reduced productivity from aflatoxin exposure can have significant negative 'economic' impact in addition to the negative health outcomes for those who consume contaminated animal products.

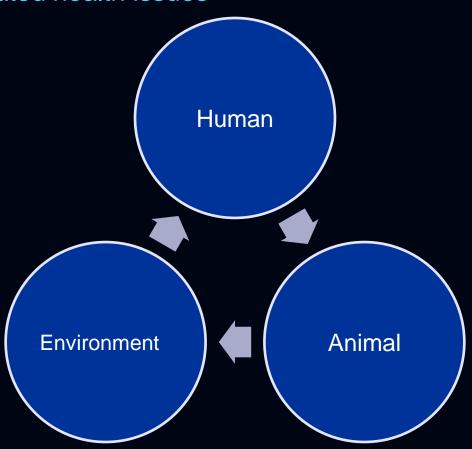
Aflatoxins: Human, Animal, and Environmental Interactions




Allowable Aflatoxin Levels in Human Foods

Amount	Food type
20ppb	Foods in general
0.5ppb (aflatoxin M(1	Milk
20ppb	Peanuts and peanut products
20ppb	Pistachio nuts
20ppb	Brazil nuts

Allowable Aflatoxin Levels in Animal Feeds


Amount	Feed Type
20ppb	For corn and other grains intended for immature animals (including immature poultry) and for dairy animals, or when its destination is not known
20ppb	For animal feeds, other than corn or cottonseed meal;
100ppb	For corn and other grains intended for breeding beef cattle, breeding swine, or mature poultry
200ppb	For corn and other grains intended for finishing swine of 100 pounds or greater
300ppb	For corn and other grains intended for finishing (i.e., feedlot) beef cattle and for cottonseed meal intended for beef cattle, swine or poultry

The Benefits of an Interdisciplinary Health Approach

Educating stakeholders on the interconnectedness of humans, animals and the environment is the first step in preventing aflatoxin-related health issues

Effective Ways to Implement Biomarkers

 1. Develop Biomarkers of Environmental Contaminations (crops, feed, livestock)

 2. Develop Biomarkers of Human Exposure (urine, blood, saliva, breast milk)

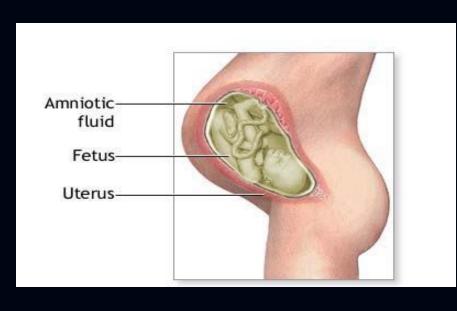
Aromatic Amine Hemoglobin Adducts in Women Smokers and Nonsmokers During Pregnancy:

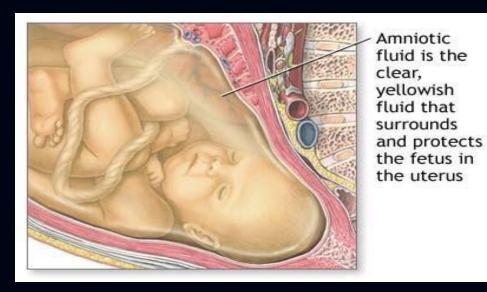
Correlations with Gestational Age, Neonatal Birth Weight,

Ethnicity, and Pharmacogenetics

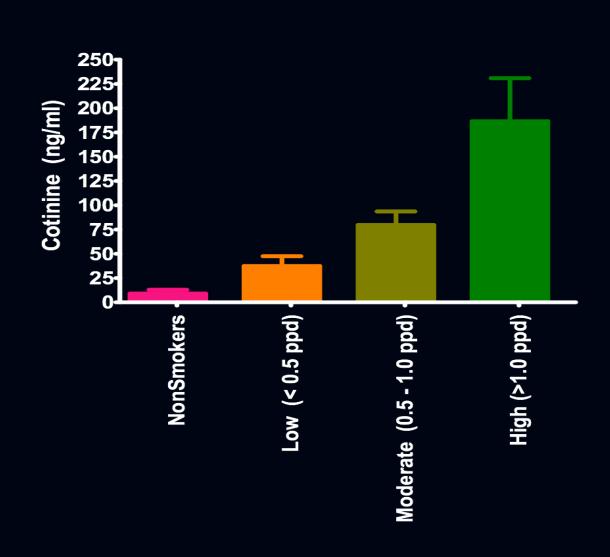
Chemical Constituents of Tobacco Smoke That Have Been Classified or Identifitheir Carcinogenicity, Reproductive Toxicity, or Other Health Hazard

COMPOUND	IARC Classification	U.S. EPA Classification ^b	CAL/EPA Prop 65°//TACd
Organic Compounds	Classification	Classification	FIOD 03 WIAC
Acetaldehyde	2B	B2	yes//yes
Acetamide	2B		yes//yes
Acrolein	3	С	//yes
Acrylonitrile	2A	B1	yes//yes
4-Aminobiphenyl	1		yes//yes
Aniline	3	B2	yes//yes
o-Anisidine	2B		yes//yes
Benz[a]anthracene	2A	B2	yes//yes
Benzene	1	A	yes//yes
Benzo[b]fluoranthene	2B	B2	yes//yes
Benzo[j]fluoranthene	2B		yes//yes
Benzo[k]fluoranthene	2B	B2	yes//yes
Benzo[a]pyrene	2A	B2	yes//yes
1,3-Butadiene		B2	yes//yes
Captan	3		yes//yes
Carbon disulfide ^e			yes//yes
Carbon monoxide ^e			yes//
Chrysene	3	B2	yes//yes
DDT	2B		yes//
Dibenz[a,h]acridine	2B		yes//yes
Dibenz[a,j]acridine	2B		yes//yes
Dibenz[a,h]anthracene	2A	B2	yes//yes
7H-Dibenzo[c,g]carbazole	2B		yes//yes
Dibenzo[a,e]pyrene	2B		yes//yes
Dibenzo[a,h]pyrene	2B		yes//yes
Dibenzo[a,i]pyrene	2B		yes//yes
Dibenzo[a,l]pyrene	2B		yes//yes
1,1-Dimethylhydrazine	2B		yes//yes
1-Naphthylamine	3		yes//
2-Naphthylamine	1		yes//
Nicotinee			yes//
2-Nitropropane	2B		yes//yes
N-Nitrosodi-n-butylamine	2B	B2	yes//
N-Nitrosodiethanolamine	2B	B2	yes//
N-Nitrosodiethylamine	2A	B2	yes//
N-Nitroso-n-methylethylamii		B2	yes//
N'-Nitrosonornicotine	2B		yes//
N-Nitrosopiperidine	2B		yes//
N-Nitrosopyrrolidine	2B		//yes
Styrene	2B		//yes
Toluene			yes//yes
2-Toluidine	2B		yes//yes
Urethane	2B		yes//
Vinyl chloride	1		yes//yes

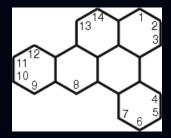

		Mainstream		Evidence for IARC evaluation of carcinogenicity		
Compounds	Processed tobacco (per gram)	(per cigarette)	In lab animals	In humans		
PAH						
Benz(a)anthracene		20-70 ng	Sufficient	NΑ		
Benzo(b)fluoranthene		4-22 ng	Sufficient	NA		
Benzo(j)fluoranthene		6-21 ng	Sufficient	NA		
Benzo(k)fluoranthene		6-12 ng	Sufficient	NA		
Benzo(a)pyrene	0.1-90 ng	20-40 ng	Sufficient	Probable		
Chrysene		40-60 ng	Sufficient	NA		
Dibenz(a,h)anthracene		4 ng	Sufficient	NA		
Dibenzo(a,1)pyrene		1.7-3.2 ng	Sufficient	NA		
Dibenzo(a,1)pyrene		Present	Sufficient	NA		
Indeno(1,2,3-c,d)pyrene		4-20 ng	Sufficient	NA		
5-Methylchrysene		0.6 ng	Sufficient	NA		

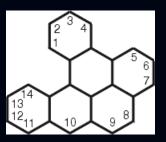

Developmental Stages	Fertilization & Implantation of Embryo	Embryonic Development						Fetal Development			
Developmental Period (Weeks)	1-2	3	4	5	6	7	8	9-15	16-19	20-36	38
Specific Usually No Teratogenic Effects From Effects Teratogens						central nervous system					
						hea	rt		on ou		
	Effects From						arms				
									eyes		
							legs				
								teeth			
	Ulauzi ila il							palate			
			in siz			PART OF	100	exte	mal genitali	а	
									ear		
General Teratogenic Effects	Prenatal Death	Major Congenital Anomalies				Functional Defects & Minor Congenital Anomalies					

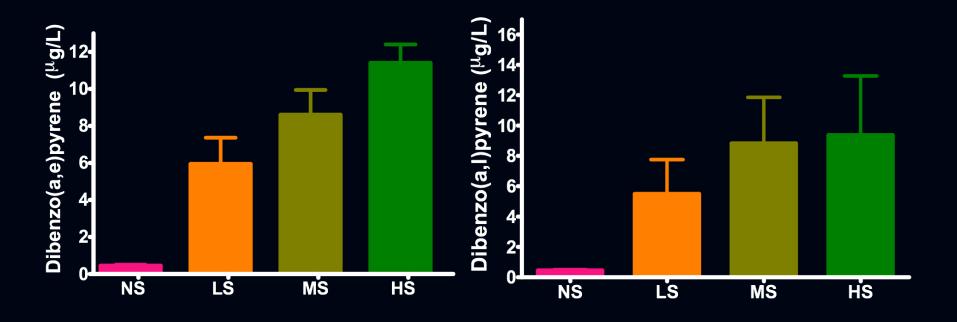
Assessing Tobacco Exposure During Pregnancy


Amniotic Fluid PAH

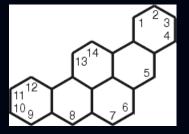
Biomarkers of PAH exposure during pregnancy (1st trimester exposure assessment(



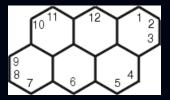

Amniotic Fluid Cotinine

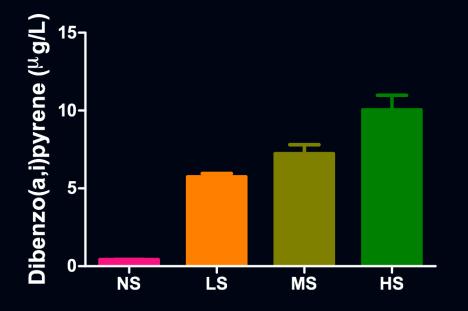


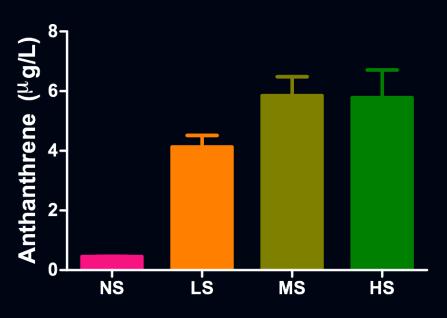
Dibenzo(a,e)pyrenes

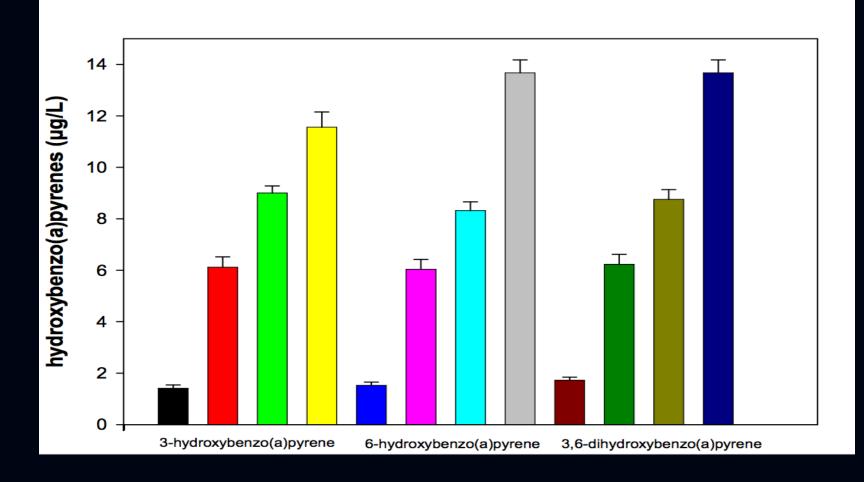


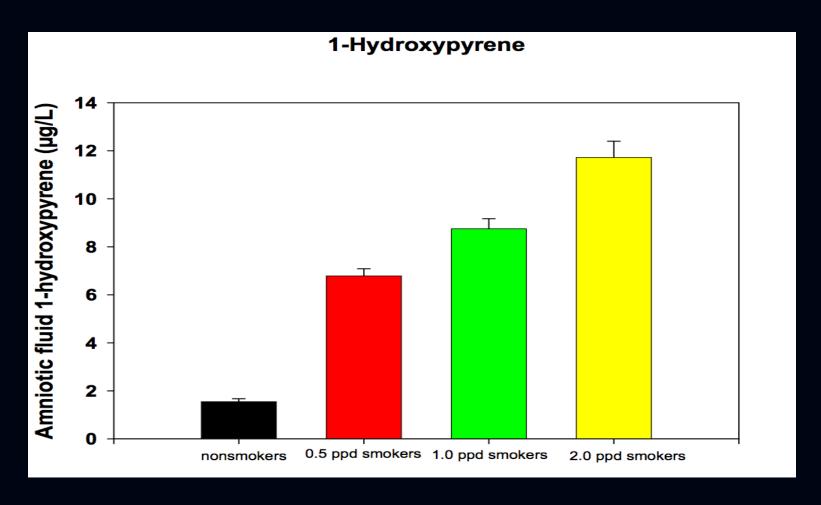
Dibenzo(a,l)pyrenes

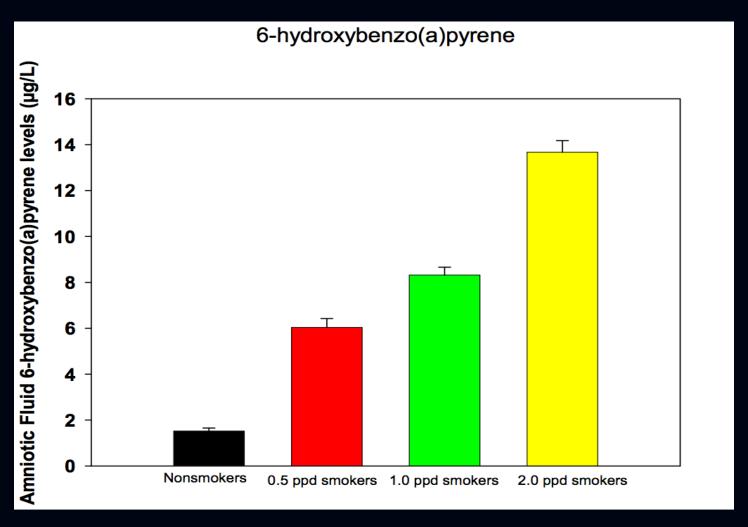




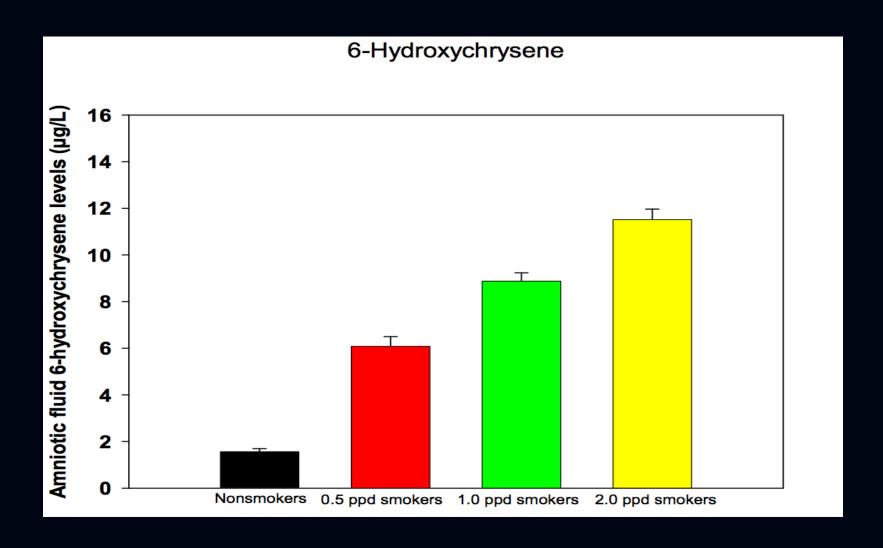

Dibenzo(a,i)pyrenes


Anthanthrene



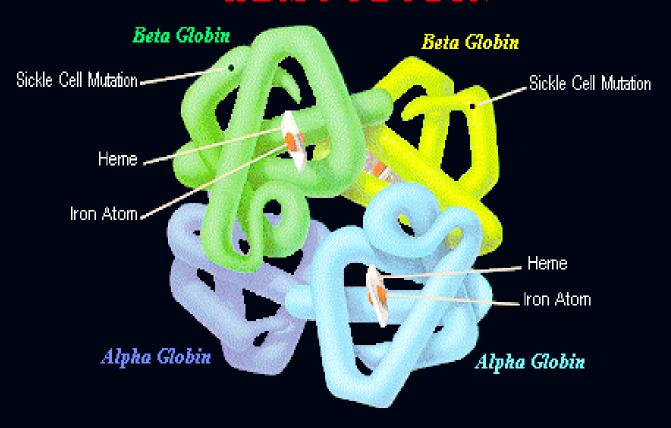


Amniotic Fluid (benzo(a)pyrenes)



Levels of 1-hydroxypyrene detected in amniotic fluid samples from nonsmokers and smokers

Levels of 6-hydroxybenzo(a)pyrene detected in amniotic fluid samples from nonsmokers and smokers



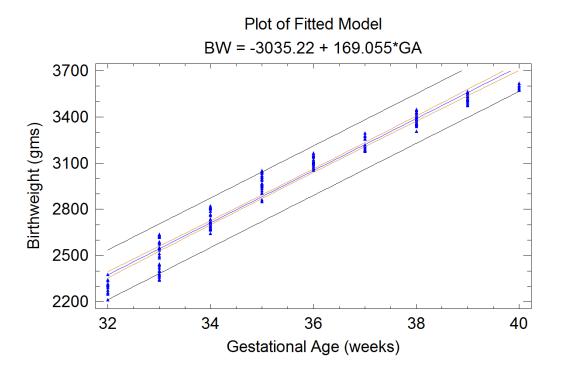
Levels of 6-hydroxychrysene detected in amniotic fluid samples from nonsmokers and smokers

Application of Hemoglobin Adducts in Maternal and Fetal Blood as Biomarkers to Tobacco Carcinogens

A Molecule To Breathe With

HEMOGLOBIN

Aromatic Amine Hemoglobin Adducts in Women Smokers and Nonsmokers During Pregnancy:


Correlations with Gestational Age, Neonatal Birth Weight,

Ethnicity, and Pharmacogenetics

- Matched Maternal and Cord Blood Samples obtained from Norton's Hospital Downtown and Norton's Suburban Hospital
- Ethnicities
 - Caucasian
 - African American
 - Hispanic
- Sample Characteristics
 - Women (18 35 years of age)
 - Single pregnancy (no multiples)
 - No pre-existing health problems
 - Women that have significant health related effects during pregnancy are eliminated from study
 - Smokers (> 1 pack per day smokers()
 - 32 >week gestational age infants not included

Plot of Fitted Model BP fetal = -10.9301 + 0.54665*BP maternal Fetal BP (pmol/mg globin) Maternal BP (pmol/mg globin)

Plot of Fitted Model BP maternal = 1003.83 - 23.9878*GA Maternal BP (pmol/gm globin) Gestational Age (weeks)

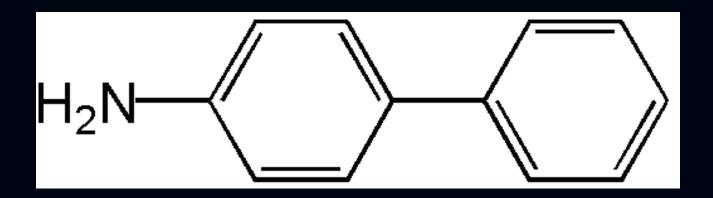
Plot of Fitted Model BP fetal = 531.797 - 12.9432*GA Fetal BP (pmol BP/mg globin) Gestational Age (weeks)

Plot of Fitted Model BP fetal = 298.765 - 0.0763429*BW Fetal BP (pmol BP/mg globin) Birthweight (gms)

Aromatic Amine Hemoglobin Adducts in Women Smokers and Nonsmokers During Pregnancy:

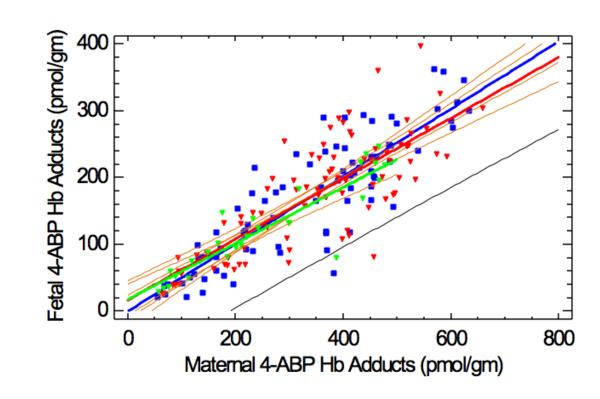
Correlations with Gestational Age, Neonatal Birth Weight,

Ethnicity, and Pharmacogenetics

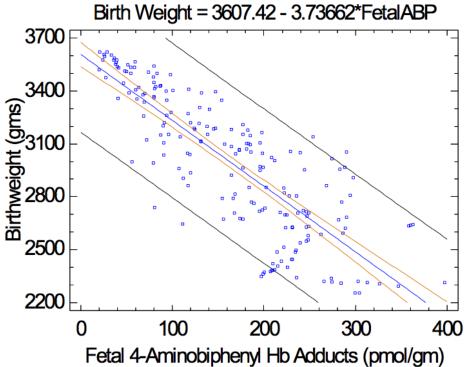

Aromatic Amines and related carcinogens in Tobacco

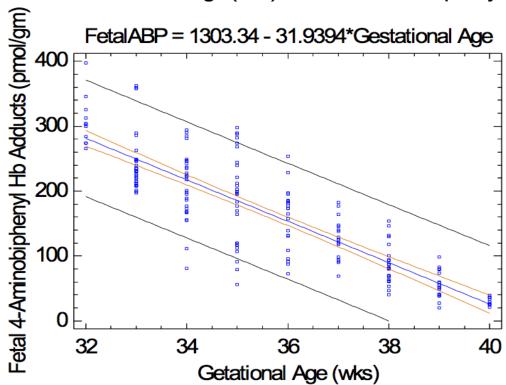

- aniline
- -2toluidine
- -3toluidine
- -4toluidine
- -2ethylaniline
- -3ethylaniline
- -4ethylaniline
- -2,3dimethylaniline
- -2,4dimethylaniline
- -2,5dimethylaniline
- -2,6dimethylaniline
- -1naphthylamine
- -2naphthylamine
- -2methyl-1-naphthylamine
- -2aminobiphenyl
- -3aminobiphenyl
- -4aminobiphenyl

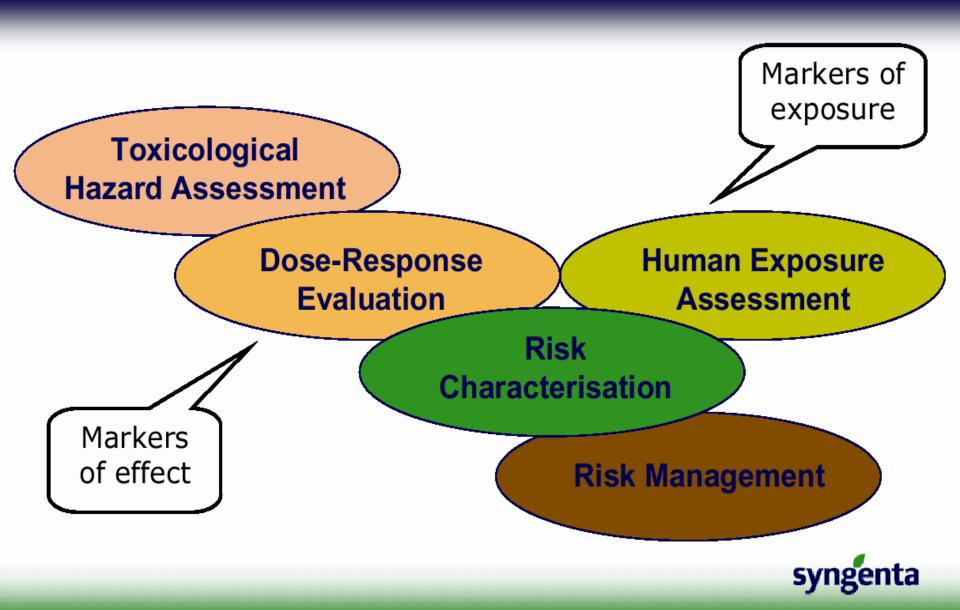
- -1nitropyrene
- -4nitropyrene
- -1,3dinitropyrene
- -1,6dinitropyrene
- -1,8dinitropyrene
- -6nitrochrysene
- -2nitrofluorene
- -5nitroacenaphthylene
- -3,7dinitrofluoranthene
- -3,9dinitrofluoranthene


-4Aminobiphenyl Concentration in Tobacco

Mainstream cigarette smoke contains 4-aminobiphenyl at levels of 2.4 to 4.6 ng per cigarette (unfiltered) and 0.2 to 23 ng per cigarette (filtered), and sidestream smoke contains up to 140 ng per cigarette




Ethnic Maternal vs Fetal 4-ABP Hb Adducts


Correlation of Fetal 4-Aminobiphenyl with Birthweight (Total Population)

Correlation of Gestational Age (wks) vs Fetal 4-Aminobiphenyl Hb Adducts

Use of biomarkers in risk assessment

Conclusions